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ABSTRACT

It is known that individual opinions on different policy issues often align to a dominant ideological dimension (e.g., left vs right) and become
increasingly polarized. We provide an agent-based model that reproduces alignment and polarization as emergent properties of opinion
dynamics in a multi-dimensional space of continuous opinions. The mechanisms for the change of agents’ opinions in this multi-dimensional
space are derived from cognitive dissonance theory and structural balance theory. We test assumptions from proximity voting and from
directional voting regarding their ability to reproduce the expected emerging properties. We further study how the emotional involvement of
agents, i.e., their individual resistance to change opinions, impacts the dynamics. We identify two regimes for the global and the individual
alignment of opinions. If the affective involvement is high and shows a large variance across agents, this fosters the emergence of a dominant
ideological dimension. Agents align their opinions along this dimension in opposite directions, i.e., create a state of polarization.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0007523

We develop an agent-based model to study how the opinions of
agents change. Each agent has an individual opinion on various
issues; therefore, this is a multi-dimensional problem. Our model
tests different assumptions about how the opinions of agents
influence each other. For example, agents can adjust their opin-
ions such that they become closer in the opinion space or devi-
ate even more. We demonstrate under which conditions agents
align their opinions; that is, their various individual opinions
can be mapped to the same dominating ideological dimension.
This is an important finding because such a dominating char-
acterization, for example, left-wing vs right-wing, is observed in
empirical studies of opinion dynamics. However, so far, concise
models to explain how this dominating dimension emerges from
interactions were missing.

I. INTRODUCTION

The famous economist Nicolas Kaldor in 1961 suggested that
theorists “should be free to start off with a stylized view of the
facts—i.e., concentrate on broad tendencies, ignoring individual
detail.”39 His advice was certainly taken by the numerous physicists

modeling opinion dynamics,9,24,35 one of the most flourishing topics
in the area of sociophysics.59 In many of these models, opinions are
treated as binary variables, {0, 1}, very much like spins, and changes
in opinions follow rather simplistic rules. Despite their abstract
nature, these models have generated interesting insights into the
dynamics of disordered systems.18,50,64,68 For example, voter mod-
els allowed studying under which conditions consensus, i.e., a large
domain with aligned spins, can be obtained or how a minority and a
majority can coexist.1,7,61

The question is how well such models fare with respect to
real, empirically observed opinion dynamics.22 To answer it in the
spirit of Kaldor requires us to specify the stylized facts that shall
be used as a ground truth or a reference for judging such mod-
els. While there is no common agreement on these stylized facts,
we can certainly pick, from our everyday experience, two obser-
vations in the political space that most scholars would subscribe
to: (i) Opinions have become increasingly polarized; i.e., there are
two fractions of almost equal share in the population with opposite
opinions.5,10,17,19,25–27,34,38,46,57,62,65,70 (ii) Opinions on different policy
issues tend to be correlated strongly.3,4 For example, individuals with
a positive stance on cannabis legalization more likely have a negative
stance on nuclear energy.2,15
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Political scientists call the correlation among opinions issue
alignment.2,11,16 Issue alignment implies that the number of inde-
pendent dimensions to describe all opinions is effectively reduced;
i.e., opinion dimensions are bundled into dominant ideological
dimensions.54 We call this property global alignment. In political sci-
ence, the main ideological dimension is called the left–right dimen-
sion, in the US also the liberal–conservative dimension.25,40,43,45,47

If global alignment is high, the opinion spectrum of individuals
regarding different issues can be characterized sufficiently by assign-
ing them a position on this continuous ideological dimension. We
can then define individual alignment as the alignment of an indi-
vidual to this dominant ideological dimensions. Studies have shown
that political behavior and decision making, such as election choices,
parliamentary voting, legislative decisions, coalition formation, and
judicial decisions, can be explained to a large degree based on the
ideological positions of political actors.3,4,37,49,54

The emergence of this dominant ideological dimension is
addressed as a major open research question in political science.54

Based on the fact that political elites usually exhibit much stronger
issue alignment than the general population, Poole (Ref. 54, p. 211)
believes that “part of the answer to these questions is that political
elites are passionate about their beliefs.” We want to investigate this
proposed link between what we call affective involvement in politics
and issue alignment—both global and individual alignment. We will
do this by modeling affective involvement as an individual variable
and coupling it to opinion dynamics.

Can voter-type opinion dynamic models proposed by socio-
physicists replicate the stylized facts of polarization and opinion
alignment? Polarization is trivially built into voter-type models by
the dichotomy of the two opposite opinions. Therefore, if we do not
obtain consensus in the long run, i.e., the dominance of one opin-
ion, we obtain polarization, i.e., the coexistence of two (by design)
extreme opinions. In the absence of any alternative, these opin-
ions already represent the ideological left and right positions. Model
parameters allow us to adjust the fractions of the respective camps
even to 50/50, i.e., a stalemate reminiscent of real political situations
in quite a number of different countries.

We argue that such models have not passed the test for obvious
reasons: They do not show the emergence of a polarized opinion
state, and they also do not show the emergence of an ideological
dimension along which polarization occurs. The term emergence
refers to a process of self-organization that leads to a new systemic
property as the result of the dynamic interactions between a large
number of individuals. In our paper, these individuals are repre-
sented as agents with certain internal degrees of freedom, most
notably their opinion. Interactions refer to the exchange of infor-
mation about the opinions of others, which in turn results in an
adjustment of the opinion of each individual. With respect to opin-
ion dynamics, the emerging properties are polarization and global
alignment.

In order to obtain these emerging properties, we have to change
from binary opinions to continuous opinions. These opinions can
still be mapped to a finite interval, e.g., [−1, +1], but extreme
opinions should be less frequent, at least initially, than moderate
ones. Secondly, we have to change from one-dimensional opinions
to multi-dimensional opinions. Each dimension represents a given
policy issue about which an individual can have its own opinion.

The dominating ideological dimension is not one of these policy
dimensions, but will emerge through the correlation of these issues.

However, there is more to it. Experienced modelers would
probably know how to obtain the requested outcome from simplistic
assumptions. However, even a correct outcome on the macro level
does not allow us to conclude that the respective assumptions for
interactions on the micro level are correct as well. Because there are
various ways of obtaining a given outcome, we need additional evi-
dence for our micro-mechanisms. This means that we have to base
our interaction model on theories or experiments that justify our
assumptions. This is the most neglected problem of socio-physics
models of opinion dynamics. To solve it would require to learn
about works in sociology, psychology, and political science to con-
sider how and why individuals change their opinions. These insights
can still be formalized as shown, for example, in Ref. 28. The rules
for interactions are then no longer ad hoc assumptions but backed
up by additional disciplinary arguments.

The main goal of our paper is to provide an agent-based model
of opinion dynamics that is able to reproduce the emergence of
global alignment, starting from a random distribution of opinions.
While the existence of alignment is already discussed particularly in
political science, the challenge is to present a model that can generate
global alignment as an emerging phenomenon, without encoding it
in the setup of the model. Additionally, we are interested in the rela-
tion between alignment and individual affective involvement into
politics.

In Sec. II, we will discuss the theoretical background of our
modeling assumptions. We then continue with introducing the
setup of our agent-based models in a multi-dimensional opinion
space in Sec. III. Based on our theoretical assumptions, in Sec. III, we
present three opinion dynamics models and analyze whether they
lead to the emergence of global alignment. In Sec. IV, we then inves-
tigate the link between individual affective involvement in politics
and issue alignment.

II. THEORETICAL BACKGROUND

A. Balance theory

Our first aim is to motivate our rules of opinion change from a
plausible set of micro-mechanisms.30 These micro-mechanisms are
derived from established psychological theories, in particular, cogni-
tive balance theory,33 and its extension to social relations, structural
balance theory.8

Cognitive balance theory focuses on the perspective of the indi-
vidual, specifically the relation between its beliefs or opinions. It
postulates that if an individual holds two or more beliefs that she
judges as contradictory, she will experience this as unpleasant. To
alleviate this unpleasantness, the individual will either adapt or drop
one of these beliefs to re-establish accordance. Hence, an individual
has the tendency to minimize cognitive dissonance, which can be
seen as a micro-foundation of opinion formation.28

Structural balance theory extends cognitive balance theory to
explain the relations between individuals. Two individuals i and
j can have either a positive relation, rij = +1, or a negative one,
rij = −1. Structural balance theory focuses on triadic relations
{i, j, k}, i.e., relations between three individuals i, j, and k. It pos-
tulates that there are stable and unstable triads. Whether a triad is
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stable or unstable can be determined by multiplying the signs of
the relations rij, rik, and rjk in the triad. For example, if individu-
als i, j, and k have exclusively positive relations with each other,
rij = rik = rjk = +1, the product of their signs would be positive; i.e.,
the triad is stable. If, however, two relations are positive and one is
negative, e.g., rij = rik = +1, rjk = −1, the product would be neg-
ative and the triad is assumed to be unstable. Unstable triads have
the tendency to transform themselves into stable triads. This means
that either i convinces j and k to change their relations into a posi-
tive one, rjk = +1, or i changes its own relation to either j or k to a
negative one, rij = −1 or rik = −1. In the latter case, the triad would
have two negative relations and one positive. Hence, the product of
the signs becomes positive and the triad has become stable.

We combine the assumptions of cognitive and structural bal-
ance theory to explain how individuals’ opinions interact with the
social relations between individuals. An alternative approach is pre-
sented in one of our previous works on weighted balance theory,57

which combines elements of cognitive balance theory with an emo-
tional factor of evaluative extremeness that was calibrated through
the empirical analysis of an electoral survey.

Figure 1 considers two individuals i and j and their opinions
on three policy issues x, y, and z. For the moment, we assume
that each individual can only have a positive or negative stance on
each issue. Their opinions can be expressed by the opinion vec-
tors oi = {oi

x, o
i
y, o

i
z}. In the example shown in Fig. 1(a), for i, we

find that oi
x = oi

z = −1, oi
y = +1, while for j, we find that o

j
x = −1,

o
j
y = o

j
z = +1. This means that both individuals have a negative

stance on the issue x and a positive stance on y, but on the issue
z, their opinions contradict each other.

Regarding the relation between individuals i and j, we now
make the following assumption: Since i and j agree on two issues
and disagree only on one, they have a positive relation; i.e., rij = +1.
Together with the relation between individuals i and j, the three
opinions now form three different triads, each of which contains i,
j, and one of the three policy issues, x, y, or z. Based on the rules
explained above, we see that the triads {i, j, x} and {i, j, y} are sta-
ble because the product of the signs is positive, whereas the triad
{i, j, z} is unstable because the product of the signs is negative. In
other words, cognitive dissonance is produced if (i) i likes j but dis-
agrees with j on any issue or (ii) if i dislikes j but agrees with j on an
issue.

In the first case, we assume that i and j will reduce dissonance
by assimilating their opinions to each other. In other words, there
will be a positive (attractive) social influence between i and j. But
what happens in the second case, where the opinions of i and j are
so dissimilar that there is a negative relation between them? We
consider two options regarding how individuals resolve the disso-
nance stemming from a negative relation, bounded confidence and
repulsion.

B. Bounded confidence

First, one can assume that two individuals i and j do not
interact anymore if differences in their opinions are larger than
a certain threshold ε. This seems to be a reasonable argument
because, without interaction, they are no longer confronted with

the cognitive dissonance resulting from their negative relation. This
argument also underlies the much-discussed filter bubbles and echo
chambers,51 which emerges when users of online media ignore
information and opinions that do not fit their own. This option cor-
responds to the class of bounded confidence models,14,32 and we will
see whether it is sufficient to generate global alignment in our first
two opinion dynamics models, presented in Secs. III C and III D.

The interaction threshold ε is usually assumed to be constant
and equal across individuals. The bounded confidence model, for
example, simply treats this as a tunable parameter that impacts the
possibility of reaching consensus. However, it is very important for
the opinion dynamics to what extent an individual may be affected
by the respective policy issues. Psychological research shows that
opinions with a stronger emotional component are more resistant to
change.56 In other words, beliefs or opinions associated with strong
emotional reactions are more stable. Hence, this individual emo-
tional level may have an impact on the interaction threshold, i.e.,
whether or not opinions change. Thus, it is reasonable that an indi-
vidual’s affective involvement in politics influences how soon she
will experience a critical level of cognitive dissonance that makes
her abort or avoid interaction. In Secs. III D and III E, we will
discuss how affective involvement can be related to the interaction
threshold ε.

C. Repulsion

Instead of avoiding the interaction, if individuals already dis-
agree on most issues and only agree on very few, they also have the
possibility to adjust their opinions but into the negative direction.
This means that they resolve their cognitive dissonance by also dis-
agreeing on the few issues they previously still agreed on. In Fig. 1(b),
we consider the example that individuals i and j disagree on issues
x and y and only agree on z. Because they disagree on more issues
than they agree, the overall relation between i and j in this case is
negative; rij = −1. Considering this relation between i and j, the tri-
ads {i, j, x} and {i, j, y} are stable because i and j disagree on the issues
x and y. However, the triad {i, j, z} is unstable because i and j, even
though they have a negative relation with each other, agree on issue
z. This triad produces a cognitive dissonance for i and j, which has
to be resolved in some way.

Instead of simply stopping their interaction, individual i can
also change her opinion oi

z = +1 to oi
z = −1. This transforms the

triad {i, j, z} into a stable one, and the same would result from

j changing her opinion o
j
z. As a result, i and j are now in dis-

agreement on all three issues x, y, and z. However, because of the
negative relation rij = −1, their cognitive dissonances are reduced
to a minimum. This outcome, which is desirable for both individ-
uals, postulates a repulsive force between the political positions of i
and j.

This seems counter-intuitive only if we assume that, if two indi-
viduals interact, they should end up agreeing on more issues than
before and not on less. Alternatively, there is empirical evidence36

that when individuals are confronted with positions on alcohol pro-
hibition that they fundamentally disagree with, they move away
from these positions. Similarly, in an experiment,19 partisan voters
were confronted with the information that leaders of the opposite

Chaos 30, 093139 (2020); doi: 10.1063/5.0007523 30, 093139-3

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 1. Two agents i and j agreeing on the policy dimension x and y, but disagreeing on z (a), and disagreeing on x and y, but agreeing on z (b).

party endorse a certain policy and then adjusted their political
position so as to contradict this policy.

The existence of a negative (repulsive) social influence is still
debated in the literature. A recent study66 could not find any evi-
dence for a negative influence but only tested the social influence on
a single issue dimension. However, this might not be applicable to
our scenario with several opinion dimensions. Hence, in Sec. III E,
we test the modeling assumption that if two agents disagree on too
many issues, they modify their respective opinions such that they
increase their overall disagreement.

We discussed bounded confidence and repulsion as two possi-
ble reactions to the cognitive dissonance stemming from encoun-
ters between individuals with dissimilar issue positions. But how
do individuals determine their similarity in a multi-dimensional,
continuous opinion space?

D. Proximity voting vs directional voting

Political science offers two paradigms to how individuals per-
ceive similarity in a multi-dimensional, continuous opinion space:
proximity voting and directional voting. Under proximity voting, it is
assumed that individuals determine their similarity by the Euclidean
distance between their positions in the opinion space. It has been
pointed out, however, that proximity voting is based on rather weak
empirical evidence and that its widespread usage in political science
is rather due to its convenient mathematical properties.4

Proximity voting is challenged by a different paradigm, called
directional voting.55 This means that voters do not vote for the candi-
date that is closest to them in the opinion space but for the candidate
that is on the “right side” of most issues.

We can illustrate the difference between the two paradigms
with a simple calculation. Let us consider three agents with
the following opinion vectors in a two-dimensional policy space,
oi = (0.1, 0.1), oj = (0.3, 0.3), and ok = (−0.1, −0.1). From Eq. (5),
we know the Euclidean distances with respect to the agent i; i.e.,

dij =
√

0.08 and dik =
√

0.08. Thus, if the perception of similarity
is based on proximity in the Euclidean space, i would perceive the
opinion of j exactly as similar as the opinion of k because it has the

same Euclidean distance to both. But is this assumption realistic?
Certainly not, if positive values on a given policy issue, e.g., mar-
ijuana legalization, represent a positive stance and negative values
a negative stance. Both i and j are on the “pro” side of both policy

dimensions, oi
1 > 0, oi

2 > 0, o
j
1 > 0, o

j
2 > 0, while k is on the “con-

tra” side, ok
1 < 0, ok

2 < 0. The difference between i and j only lies in
the strength of their approval to both issues. From this perspective, it
would make sense if i and j would perceive each other as very similar
and k as very dissimilar. This is exactly what the directional voting
paradigm postulates. The question whether it is more realistic is still
debated.42

In Sec. III, we will implement our theoretical considerations
in the form of three opinion dynamics models. The first, presented
in Sec. III C, is based on the assumption of proximity voting and
bounded confidence. Second, we will explore a model based on
directional voting and bounded confidence (Sec. III D) and, finally,
a model based on directional voting and repulsion (Sec. III E).

III. MODELING MULTI-DIMENSIONAL OPINION

DYNAMICS

A. Model setup

In all of the following models, we consider a multi-dimensional
opinion space, in which each dimension m = {1, 2, . . . , M} refers
to a specific political issue. About each political issue m, an agent
i has an opinion oi

m(t), which can change in discrete time steps
t = 1, . . . , T. These opinions shall be expressed as real numbers
that can be normalized such that they always fall into the interval
[−1, +1]. A strong opposition of i to the policy issue m corresponds
to oi

m = −1, strong approval to oi
m = 1, and a neutral position

to oi
m = 0. The political position of each agent i in this multi-

dimensional opinion space is characterized by an opinion vector
oi(t) composed of the M opinions oi

m(t). Considering a multi-agent
system with i = 1, . . . , N agents, the multi-dimensional opinion
space is populated with N opinion vectors oi.

Each agent is further characterized by an individual level of
affective involvement in politics, ei. This scalar value does not change
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over time and can be expressed as a real number from the inter-
val [0, 1], with ei = 0 corresponding to nonexistent, and ei = 1 to
extremely strong emotional involvement.

To determine the initial state of the opinion vectors, for each
agent and each opinion component oi

m, a random number is sam-
pled from a normal distribution, N (µo, σo) truncated to the interval
[−1, +1]. The mean of the initial opinion components is given as
µo(t = 0) = 0 and their standard deviation as σo(t = 0) < 1. This
ensures that (i) all possible values have indeed a non-negligible
probability to occur, but (ii) different from a uniform distribution,
extreme opinions will not occur with the same probability as mod-
erate opinions, but less frequent. Thus, the M-dimensional opinion
space is initially populated with N opinion vectors oi(0).

Similarly, for each agent, the affective level ei is drawn from a
truncated normal distribution N (µe, σe), limited between 0 and 1,
with mean µe and standard deviation σe.

B. General model dynamics

To specify the dynamics of the individual opinion vectors,
we use the concept of Brownian agents.58 In each of our models,
the individual dynamics results from an additive superposition of
deterministic and stochastic influences,

oi(t + 1) = F
[

oi(t), oj(t)
]

G
[

oi(t), oj(t)
]

+ Z
[

oi(t)
]

. (1)

The deterministic term is composed of two functions, F[·] and G[·],
that depend on the opinion vector of the focal agent i, but also on the
opinion vectors of other agents j, i could potentially interact with.
Specifically, we consider asynchronous updating of the dynamics.
This means, at every time step t, two agents i and j are selected
uniformly at random from the agent pool of N agents. The term
F

[

oi(t), oj(t)
]

then determines whether i and j will interact at all.
This might not be the case if, for example, their opinion vectors oi

t

and o
j
t diverge too much, as we will discuss below. If i and j interact,

then the term G
[

oi(t), oj(t)
]

determines how the opinion vector of i
will change based on the influence from j.

The stochastic term, Z
[

oi(t)
]

, represents random influences
on the opinion vector of the agent i, specifically influences that do
not originate from interactions with others individuals. For exam-
ple, own thought processes may cause it to modify its opinions on
various issues without external influences.

C. Bounded confidence model with proximity voting

1. Model description

Before we will discuss different functional forms of F[·],
G[·], and Z[·], we illustrate the dynamics by turning to the most
simple case of a one-dimensional opinion space. Because there is
only one policy issue, M = 1, each agent i only has the opinion
oi(t) ∈ {−1, +1}. Using the linear transformation xi = (oi + 1)/2,
we can map these opinions to an interval xi ∈ {0, 1}. For the dynam-
ics of continuous opinions xi(t), the bounded confidence model was
proposed.14,32,44 It assumes that two agents i and j will only interact
if the difference between their opinions is smaller than a threshold
value ε, denoted as the confidence interval, i.e., if the variable zij(t)

is larger than zero,

zij(t) = ε −1xij(t) ≥ 0, 1xij(t) =
∣

∣xj(t)− xi(t)
∣

∣ . (2)

We note that, for the one-dimensional case,1xij gives the Euclidean
distance between the two opinions. If the two agents interact, both
change their opinions toward the common mean; i.e.,

xi(t + 1) = xi(t)+ ω
[

xj(t)− xi(t)
]

2
[

zij(t)
]

,

xj(t + 1) = xj(t)+ ω
[

xi(t)− xj(t)
]

2
[

zji(t)
]

.
(3)

Here, 2[x] is the Heaviside function that gives 2[x] = 1 if x ≥ 0
and2[x] = 0 otherwise. The speed of change is determined by ω. If
ω = 0.5, both agents immediately converge to the mean of their two
opinions; i.e., xi(t + 1) = xj(t + 1) = [xj(t)+ xi(t)]/2.

Whether or not the multi-agent system converges to a sin-
gle opinion, denoted as consensus, depends on the value of ε.
For ε = 0.5, consensus is obtained; for ε = 0.2, instead, two agent
groups with distant opinions emerge. The smaller ε, the more dif-
ferent opinions coexist in equilibrium.31,44 Various extensions of the
bounded confidence model have been proposed,13,23,52 also in combi-
nation with network dynamics.29,41,48,69 For the bigger picture of this
type of dynamics, see also Ref. 60.

The bounded confidence model assumes deterministic dynam-
ics. Hence, it is expressed by the general opinion dynamics of Eq. (1),
if we choose the different functions as follows (with oi = oi for the
one-dimensional case),

F
[

oi(t), oj(t)
]

= 2
[

2ε −
∣

∣oj(t)− oi(t)
∣

∣

]

,

G
[

oi(t), oj(t)
]

= oi(t)+ ω
[

oj(t)− oi(t)
]

,

Z
[

oi(t)
]

= 0.

(4)

The bounded confidence model can be formally generalized toward
multi-dimensional problems, but the results are not trivial, as we
will show. As an illustration, we first use a two-dimensional opinion
space shown in Fig. 2. There, each agent i has an opinion about issues
1 and 2, denoted by the opinion vector oi(t) = oi

1(t)s1 + oi
2(t)s2

≡ {oi
1(t), o

i
2(t)}. Here, s1, s2 denote the unit vectors (versors) of the

respective coordinate axes. This means, in order to decide whether
two agents interact, we have to determine the similarity of their
opinion vectors at a given time step t.

One possible measure to determine the difference between the
two opinion vectors is the Euclidean distance dij(t) = d

[

oi(t), oj(t)
]

,
which is defined for the two-dimensional opinion space as

dij(t) =
√

[

oi
1(t)− o

j
1(t)

]2

+
[

oi
2(t)− o

j
2(t)

]2

. (5)

Indeed, as discussed in Sec. II D, the Euclidean distance is applied
by political scientists to measure the similarity in the opinion space
between two political actors. Greater distance then corresponds
to less similarity.4 To normalize the Euclidean distance to values
between 0 and 1, it has to be divided by the length of the diagonal

of the opinion space,
√

4M = 2
√

2.
We now assume as in the one-dimensional bounded confi-

dence model that two agents i and j interact if their normalized
Euclidean distance is less than a given threshold value 2ε. As a
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FIG. 2. Opinion vectors of two agents i and j in a two-dimensional opinion space.
d ij denotes the Euclidean distance [Eq. (5)]. The new opinion for both agents
follows from Eq. (4).

result of this interaction, both agents adjust their opinions compo-
nent wise to the common mean. With ω = 0.5, we choose for the
two-dimensional case the different functions in the general opinion
dynamics of Eq. (1) as follows:

F
[

oi(t), oj(t)
]

= 2
[

4
√

2 ε − dij(t)
]

,

G
[

oi(t), oj(t)
]

=
oi(t)+ oj(t)

2
=

oi
1(t)+ o

j
1(t)

2
+

oi
2(t)+ o

j
2(t)

2
,

Z
[

oi(t)
]

= ξi(t). (6)

At difference with the deterministic bounded confidence model,
here, we have added a random vector drawn from a truncated nor-
mal distribution, limited between −1 and 1, with mean µξ = 0 and
standard deviation 0 < σξ < 1. This shall account for stochastic
influences on the opinion formation not related to the interac-
tions and is similar to the noise introduced into one-dimensional
bounded confidence models, e.g., by Refs. 6, 20, and 53.

2. Model outcomes

We illustrate the dynamics of the two-dimensional bounded
confidence model, Eq. (6), by means of stochastic simulations of the
multi-agent system. The final results are shown in Fig. 3 for two dif-
ferent values of the bounded confidence interval ε. The details of the
dynamics are presented in Fig. 14 of Appendix A.

Figure 3(a) shows the initial state for our simulations, where
agents got randomly assigned an opinion vector in the two-
dimensional opinion space, as described in Sec. III B. Figure 3(b)

shows the outcome of the opinion dynamics if a rather large confi-
dence interval ε is chosen, while Fig. 3(c) shows the outcome for a
rather small value of ε. The results are in line with insights from
the one-dimensional bounded confidence model [Eq. (3)]. If ε is
large enough, we see the emergence of consensus in the middle of
the opinion space. For the classical bounded confidence model, this
would be xstat = 0.5, whereas it is here {ostat

1 , ostat
2 } = {0, 0}. If ε is too

small to reach consensus, we observe the formation of different clus-
ters in the opinion space, i.e., groups of agents converging to the
same opinion. More specifically, most agents converge to a big clus-
ter in the center of the opinion space, while agents at the fringe of
the original, spherical random distribution are left behind and form
smaller clusters. This indicates the long-term coexistence of differ-
ent opinions in the multi-agent system. We note that, in this case,
still the majority of vectors converge to the origin, which shows the
largest cluster of agents, whereas in the periphery, some agents are
left behind in smaller clusters.

While the outcome reached is mainly determined by the value
of ε, it also depends on the level of randomness, expressed by ξ .
If the standard deviation σξ is sufficiently large, random changes
of opinions are able to bring agents sufficiently close in the opin-
ion space such that they can continue to interact. This then fosters
the emergence of consensus by destabilizing opinion clusters in the
periphery. Whether the outcome of the simulation results in consen-
sus or coexistence is certainly different from the agent perspective,
the resulting average opinion over all agents in the long run is in
both cases the same, namely, {ō1, ō2} = {0, 0}.

Thus, irrespective of the value of ε, the multi-dimensional
bounded confidence model does not lead to the emergence of a main
ideological dimension and global opinion alignment.

D. Bounded confidence model with directional voting

1. Model description

In order to apply the directional voting paradigm, we have to
modify the way agents quantify distances between opinions. For
this, we introduce a new measure, directional similarity, Dij. While
the Euclidean distance dij, Eq. (5), takes the full information from
the opinion vectors oi and oj into account, the directional sim-
ilarity only uses information about the angles φi and φj of the
respective opinion vectors. Different from Ref. 63, we use the angle
instead of the cosine distance in order to keep our similarity function
consistent with our opinion change function (vector rotation; see
below).

To formalize this step, we transform the opinion vector
oi(t) =

{

oi
1(t), o

i
2(t)

}

into polar coordinates, oi(t) =
{∣

∣oi(t)
∣

∣ ,φi(t)
}

,

where the length
∣

∣oi(t)
∣

∣ and the angle φi(t) of the vector are, for a
two-dimensional opinion space, defined as follows:

∣

∣oi(t)
∣

∣ =
√

[

oi
1(t)

]2 +
[

oi
2(t)

]2
,

φi(t) =











arctan
[

oi
2(t)/o

i
1(t)

]

for oi
1(t) > 0, oi

2(t) ≥ 0,

arctan
[

oi
2(t)/o

i
1(t)

]

+ 2π for oi
1(t) > 0, oi

2(t) < 0,

arctan
[

oi
2(t)/o

i
1(t)

]

+ π for oi
1(t) < 0.

(7)

The case analysis is needed because arctan(x) is not an injective
function, but it is convenient to implement. This always returns a
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FIG. 3. Opinions of N = 10 000 agents in a two-dimensional opinion space. (a) Initial distribution at time t = 0. (b) Long-term outcome (t = 60 000) if ε = 0.5. (c) Long-term
outcome (t = 210 000) if ε = 0.25. For other parameters, see Appendix A.

value φ ∈ [0, 2π]. We can then define the difference between the
angles of the opinion vectors of agents i and j as

1φij(t) =

{

[

φj(t)− φi(t)
]

if
∣

∣φj(t)− φi(t)
∣

∣ ≤ π ,

2π −
[

φj(t)− φi(t)
]

if
∣

∣φj(t)− φi(t)
∣

∣ > π .
(8)

This always returns a value1φ ∈ [0,π], which can be mapped to an
interval [0, 1] by scaling1φ/π .

To specify the general opinion dynamics, Eq. (1), we make
the following assumption for F

{

oi(t), oj(t)
}

: two randomly chosen
agents i and j will only interact if 1φij(t)/π is less than a crit-
ical threshold εi. Different from the proximity voting model, we
now follow studies such as Ref. 12 and model ε as an individual
parameter. Specifically, we assume that it is coupled to the affec-
tive involvement ei. As mentioned above, agents with a high level
of affective involvement may become less tolerant to other opin-
ions. Therefore, we define ε ≡ εi = 1 − ei, where ei initially is ran-
domly chosen from the interval [0, 1] and constant over time. This
results in

F
{

oi(t), oj(t)
}

= 2
[

Dij(t)− ei
]

, Dij(t) = 1 −
1φij(t)

π
. (9)

We call Dij(t) the pairwise directional similarity. It becomes maxi-
mal, Dij = 1, if both agents have perfectly aligned opinion vectors.
In this case, even a maximal affective involvement, i.e., a minimal
confidence interval, will not prevent them from interacting.

If the two agents interact, then they change their opinion such
that they align their opinion vectors; i.e., the opinion vectors rotate
to a new angle φi → θ i, but their absolute value does not change.
The update function G

{

oi(t), oj(t)
}

, therefore, reads in Cartesian
coordinates as

G
{

oi(t), oj(t)
}

=
∣

∣oi(t)
∣

∣

[

cos
{

θ i(t)
}

s1 + sin
{

θ i(t)
}

s2

]

. (10)

Random influences now only affect the angle φi, i.e.,

Z
[

oi(t)
]

= ξ(t)φi(t). (11)

Therefore, the updated angle θ i(t) is determined both by the (deter-
ministic) rotation and by random changes ξ(t),

θ i(t) = φi(t) [1 + ξ(t)] + ω1φij(t). (12)

FIG. 4. Opinion vectors of two agents i and j in a two-dimensional opinion space.
1φ ij is given by Eq. (8). The new opinion for both agents follows from Eq. (13).
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FIG. 5. (Top row) Opinions of N = 2500 agents in a two-dimensional opinion space at different time steps: (a) t = 50 000, (b) t = 70 000, and (c) t = 100 000. (Bottom
row) Distribution of the corresponding pairwise directional similarity P[Dij(t)], Eq. (9).

If we assume as before ω = 0.5, we find in an explicit form,

θ i(t) = ξ(t)φi(t)+











[

φj(t)+ φi(t)
]

2 if
∣

∣φj(t)− φi(t)
∣

∣ ≤ π ,

π +
[

φj(t)+ φi(t)
]

2 if
∣

∣φj(t)− φi(t)
∣

∣ > π .

(13)

This update rule is illustrated in Fig. 4, to be compared with Fig. 2
based on the Euclidean distance.

2. Model outcomes

We illustrate the outcome of the alignment model by means of
agent-based simulations illustrated in Fig. 5. To make it comparable
to Fig. 3, we first restrict ourselves to a two-dimensional opinion
space. The initial state is the same as shown in Fig. 3(a) and follows
from the setup described in Sec. III B. While the first row in Fig. 5
shows the positions of the agents in the two-dimensional opinion
space at different times, the second row shows the distribution of the
corresponding pairwise similarity measure, Dij(t), Eq. (9). The initial

distribution of Dij(0), which matches the initial opinion distribution,
Fig. 2(a), is shown in Fig. 7(a).

In the simulations shown in Fig. 5, the affective involvement ei,
which together with Dij enters the function F[·], Eq. (9), is set to a
constant value ei ≡ e = 0.5, equal for all agents. Random influences
are set to zero, Z[·] = 0, Eq. (11); i.e., the dynamics are completely
deterministic.

As we can see, in an early phase, the opinion vectors are
broadly distributed, and the corresponding distribution P[Dij(t)],
which reflects the angle 1φij(t) between any two vectors, is almost
uniform. This changes over time into a clear bimodal distribution.
Its meaning becomes clear from the opinion positions in the two-
dimensional space: agents tend to align their opinions such that a
dominant direction emerges. Almost all agents align to this domi-
nant direction but still position themselves on opposite sides. Hence,
we do not observe consensus (which would also imply an align-
ment of opinions), but the coexistence of opinions from the left/right
spectrum, i.e., polarization.

Note that, because of the assumed directional voting, agents
do not adjust the magnitude of their opinion vectors, but just the
angle. We add that a recent model built on a novel weighted balance
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FIG. 6. Opinion vectors of two agents i and j in a three-dimensional opinion space.
Note that the two vectors define a plane (in gray), on which the angle 1φ ij is
measured.

theory57 is also able to reflect changes in the magnitude of the
opinion vectors. Without that, we do not see a pronounced
polarization, in which extreme opinions (with large magnitude)
dominate. However, the emergence of a global alignment is
clearly observed, which was the goal of this opinion dynamics
model.

While our opinion dynamics model performs very promising
in two dimensions, this raises the question how robust the outcome
is if we change (i) interaction parameters or (ii) the dimensionality of
the opinion space. Unfortunately, this robustness is not given, and in
the following, we shortly explain the reasons for this, as a motivation
for the model extension in Sec. III E.

The underlying dynamics assumes a critical threshold, in this
case expressed by the affective involvement e. Very similar to the
proximity voting model, this threshold decides about consensus or
coexistence of opinions in the long run. Decreasing e for all agents
increases the range of possible interactions because agents with a

lower affective involvement have a larger tendency to change their
opinions. This in turn destroys the coexistence of different opinions
and fosters consensus. The same happens if we, instead of using a
fixed value for all agents, increase the width of the distribution, P[e],
this way allowing more agents to have a lower value of ei. Of course,
there will be also more agents with large ei, but what matters to reach
consensus is the fraction of those agents that can still interact with
others. If the agent i is no longer willing to approach the agent j in
the opinion space, the agent j still can if its ej value is low enough.
Increasing the randomness in the dynamics by setting σξ > 0 also
favors the emergence of consensus.

The dimensionality M of the opinion space impacts the results
in a less obvious, but interpretable manner. We recall that agents
get assigned initial opinions on each dimension in a random man-
ner. The angle between any two opinion vectors is, in a multi-
dimensional space, calculated on the plane defined by the two
vectors (see Fig. 6). This means, even in higher dimensions, there
is only one angle 1φij. For M = 2, this can have initially any value
between (0,π) [shown in Fig. 7(a)]. However, the expectation value

is
〈

1φij(0)
〉

= π/2. With each additional dimension, the probability
to still find extreme values for 1φij decreases and the distribu-
tion P[Dij(0)] narrows down toward the expectation value,

〈

Dij(0)
〉

= 1 −
〈

1φij(0)
〉

/π = 0.5. This can be clearly seen in Fig. 7,
which shows the distribution of initial pairwise distances P[Dij(0)]
for different dimensions. While this distribution is very broad
and almost uniform for M = 2, it quickly approaches a uni-
modal distribution centered around 0.5, if M is increased. In
other words, it becomes unlikely for an agent to meet another
agent with very similar or very dissimilar opinions. Most pairs
of agents will have a mixture of congruent and opposing opin-
ions.

For higher dimensions, the initial distribution P[Dij(0)]
already ensures that all agents have (almost) the same align-
ment/disalignment of their opinion vectors, i.e., π/2. Then, the
threshold value e, or the respective distribution P[e], determines the
outcome of the opinion dynamics. If the affective involvement is
low, for example, e � 0.5, the majority of agents are able to interact,
this way aligning their opinions even more, which eventually leads

FIG. 7. Initial distributions of the pairwise directional similarity P[Dij(0)] for different dimensions of the opinion space: (a) M = 2, (b) M = 3, and (c) M = 28.
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to a large alignment together with (almost perfect) consensus. This
is shown in Fig. 16 of Appendix B. If the threshold is high, e � 0.5,
the majority of agents is not able to interact. Then, their alignment
distribution stays as a unimodal distribution centered around 0.5,
very close to the initial distribution. In both cases, it is not possible
to obtain the desired scenario of a bimodal alignment distribution,
where agents align their opinions along the emerging ideological
dimension, as shown in Fig. 5 for M = 2. The lack of diametrically
opposed opinion vectors in the initial state makes the emergence of
a polarized state very unlikely.

E. Directional voting model with repulsion

1. Model description

So far, we have used a critical threshold to determine whether
two agents still interact. This threshold has already become an indi-
vidual parameter and was coupled to the affective involvement of the
agents. Therefore, now, we go back to the argumentation in Sec. II A,
where we discussed the options of two individuals that disagree on
most issues and only agree on a few. Instead of not interacting, which
we simulated in Secs. III B–III D, we now assume that they still inter-
act but solve their cognitive dissonances by disagreeing even on the
few issues they previously agreed on.

Because now all agent pairs can potentially interact, we have to
change the respective function as follows:

F
[

oi(t), oj(t)
]

= 1. (14)

However, based on their interactions, two agents will not always
align their opinion vectors. Instead, if1φij(t) is larger than a thresh-
old δ, we assume that as a result of their interaction, they deviate
even more in an opinion space. Precisely, the absolute distance
between their updated angles,

∣

∣θ j(t)− θ i(t)
∣

∣ increases compared to
1φij(t) if 1φij(t) > δ, whereas it decreases if 1φij(t) < δ. We set
δ = π/2, which means that agents with orthogonal opinion vectors
do not influence each other’s opinion. If their current alignment is
less then π/2, they tend to align more, and if it is more than π/2,
they tend to deviate even more.

This assumption is in line with the arguments in Secs. II A
and II C because1φij(t)measures precisely whether agents agree or
disagree on most issues. If1φij(t) < π/2, they agree on most issues
(but may still disagree on a few), and if1φij(t) > π/2, it is the other
way round. This means, 1φij(t) effectively determines whether the
relation between the two agents is positive, rij = +1, or negative,
rij = −1. This way, we have implemented the theoretical arguments
based on the combination of the cognitive dissonance theory and
the structural balance theory in our agent-based model of opinion
dynamics.

We can formally express this argument in our update func-
tion, G

[

oi(t), oj(t)
]

, Eq. (10), if the parameter ω to update the
angle, Eq. (12), becomes a function that depends on 1φij(t) in a
non-monotonous manner, for example,

ωij(t) = ω
[

1φij(t)
]

=
1

2
sin

[

21φij(t)
]

. (15)

This is shown in Fig. 8. As we see, the previous dynamics, i.e.,
ωij = 1/2, is regained if 1φij(t) = π/4. In this case, the two agents
completely align their opinion; i.e., each one rotates its opinion

FIG. 8. Update parameter ωij = ω[1φ ij(t)], Eq. (15), dependent on the angle
1φ ij between the opinion vectors of agents i and j.

vector by π/8 toward the other. Conversely, if 1φij(t) = 3π/4, we
obtain ωij = −1/2 and each agent rotates its opinion vector by π/8
away from the other.

We emphasize that the transition from alignment to disalign-
ment is smooth and not abrupt. The largest changes in opin-
ions occur when both the motivation to change opinions and the
number of opinions that can be changed are high. This motiva-
tion is high if agents already have a sufficient agreement or dis-
agreement on a number of issues. In cases of perfect alignment
or disalignment, agents will not change their opinions based on
the interaction with others because they already agree or disagree
completely.

Finally, we need to specify the function Z
[

oi(t)
]

for the ran-
dom influences. This still affects the angle φi, but instead of just
considering random shocks ξ(t), we now also consider the affec-
tive involvement ei of an agent. Assuming that a higher emotional
involvement in policy issues makes the opinion of an agent more
resistant to a random change, we choose

Z
[

oi(t)
]

= φi(t) ξ(t)
{

1 − ei
}

. (16)

This means, agents with higher emotional involvement are less sus-
ceptible to noise. As before, ξ is sampled from a distribution with
mean µξ = 0 and standard deviation σξ , which regulates the overall
level of randomness in the system.

Combining all these ingredients, the updated angle θ i(t) is now
slightly different from Eq. (12),

θ i(t) = φi(t)
[

1 + ξ(t)
{

1 − ei
}]

+ ωij(t)1φij(t), (17)

where ω(t) follows from Eq. (15) and G
[

oi(t), oj(t)
]

is still given by
Eq. (10).

2. Model outcomes

In Fig. 9, we present the results for the multi-dimensional opin-
ion space with M = 28, using the same initial setup as before. We
first highlight that our opinion dynamics model is indeed able to
produce an outcome with a bimodal pairwise directional similarity
distribution. This is achieved despite the fact that the initial distri-
bution, because of the high dimensionality, is unimodal and quite
narrow, as shown in Fig. 9(a). Second, we note that this outcome is
robust because it is achieved even in those cases where a broader dis-
tribution P[e] and an increased noise level are considered.Different
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FIG. 9. Opinions of N = 2500 agents in a multi-dimensional opinion space (M = 28) at different time steps: (a) t = 0, (b) t = 380 000, and (c) t = 500 000. (Top row)
Agents’ positions on the first two opinion dimensions s1 and s2. (Bottom row) Distribution of the corresponding pairwise directional similarity P[Dij(t)], Eq. (9). Further
parameters: µe = 0.6, σe = 0.5 for the affective involvement and σξ = 0.2 for the noise.

from the case discussed above, this does not lead to consensus in
the end. Alternatively, we clearly observe the emergence of polar-
ized opinions along a dominant ideological dimension. The scat-
terplots in Fig. 9 show how the opinion vector endpoints slowly
align themselves to one dimension, pointing in both directions
from the origin. Furthermore, similarity histograms show that the
model produces a polarized state: In the last stage, there is about
an equal number of pairs of agents with very high and with very
low similarity values—exactly what is expected from a polarized
outcome.

IV. ISSUE ALIGNMENT AND AFFECTIVE INVOLVEMENT

A. Global alignment

In this section, we further explore the emergence of a dominant
opinion dimension in an M-dimensional opinion space in our last
model (Sec. III E) and, in particular, how this emergence is depen-
dent on the level of affective involvement e. One way to extract this
dominant dimension from the simulated data is the principal com-
ponent analysis (PCA). By means of an orthogonal transformation
of the original opinions, oi(t) = oi

1(t)s1 + oi
2(t)s2 + · · · + oi

M(t)sM,

in the opinion space s1, . . . , sM, PCA identifies the principal compo-
nents c1, . . . , cM, i.e., the axes of a transformed opinion space, such
that c1 shows (“explains”) the largest variance in the data, c2 the
second largest, etc. In most cases, already the first few principal com-
ponents m = 1, 2, 3 are sufficient to explain the variance observed.
Compared to the M dimensions, this means a dimensionality reduc-
tion, which necessarily implies a loss of information. However, PCA
is a way to minimize this loss of information, provided that cer-
tain assumptions, for instance, about linear correlations between the
opinions hold.

In the following, we only use the first component, c1, based on
the insight that the main ideological dimension was found to be the
most important one explaining real opinion distributions on policy
issues. In order to calculate how much of the variance is explained
by c1, we have to follow the standard procedure of PCA, just sum-
marized here: (a) center the data, i.e., oi

1 − 〈o〉1 etc., (b) compute the
covariance matrix, (c) calculate the eigenvalues and corresponding
eigenvectors, (d) normalize the eigenvectors to unit vectors, and (e)
transform the covariance matrix into a diagonal matrix. The diag-
onal elements of this matrix then give us the variance explained
by the corresponding axes. This means, the largest eigenvalue λ1

refers to the variance explained by the first principal component
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FIG. 10. Global alignment A(t) over time measured in simulation steps. (a) Model with opinion alignment, Eqs. (9), (10), and (13) and no noise, for M = 2, also shown in
Fig. 5. (b) Model with opinion alignment and repulsion, Eqs. (10), (14), and (17), for M = 28, also shown in Fig. 9.

c1. In the following, we define this as our measures of global
alignment, A,

A = Var(c1) = λ1. (18)

If A = 1, all individual opinion vectors lie on the dominant ide-
ological dimension. The lowest value of global alignment that
can be attained is A = 1/M, meaning that there is no global
alignment whatsoever. In the following, we use the term “global
alignment” to distinguish it from individual alignment, which
we are going to define further below. Here, just note that A is

not defined as an average over individual alignments. Figure 10
illustrates how the global alignment A evolves over time for
the two simulation runs shown in Figs. 5 and 9. Figure 10(a)
shows the almost perfect global alignment along the dominat-
ing dimension, for M = 2. In Fig. 10(b), we clearly see that
due to the noise, the model never comes completely to rest and
never fully aligns to the first component of the PCA because of
the high number of dimensions, M = 28. However, after 400 000
iterations, the global alignment stabilizes around a relatively high
value of 0.6.

FIG. 11. (a) Global alignment A for varying distributionsN (µe, σe) to describe the affective involvement of agents. Different lines refer to different values of µe, the x-axis
to different values of σe. (b) Standard deviation σD of the distribution P[D

ij ] of pairwise directional similarities. Error bars indicate the standard errors with respect to the mean.
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B. Impact of affective involvement

We now investigate how the global alignment A depends on the
second variable that characterizes each agent, the affective involve-
ment ei ∈ [0, 1]. We focus on the opinion dynamics with alignment
and repulsion and concentrate on the high-dimensional opinion
space, M = 28. A discussion of how the affective involvement
impacts the model with only alignment was already given
above.

We recall that the value of ei is constant over time but in gen-
eral drawn from a truncated normal distribution N (µe, σe). This
means, varyingµe between 0 and 1 allows us to increase the expected
value for the affective involvement, which decreases the ability to
randomly change the opinion as it directly impacts Z[·], Eq. (16).
Varying σe between 0 and 1, on the other hand, allows making agents
more heterogeneous regarding this ability. Thus, high values of µe

combined with low values of σe would refer to a deterministic limit,
while low values of µe combined with low values of σe would refer
to a random limit, where all agents are impacted by the noise in the
same (large) manner.

In our agent-based computer simulations, we vary both µe and
σe in steps of 0.1. For each combination (µe, σe), we run 10 sim-
ulations for 1 000 000 time steps to ensure that a quasi-stationary
global alignment is reached [see also Fig. 10(b)]. Due to the noise, the
simulations never reach a completely stationary state. To determine
the values of ξ i, we sample from the truncated normal distribution
N (µξ , σξ ) with µξ = 0 and σξ = 0.2.

The results are shown in Fig. 11(a). We clearly see that for large
µe, i.e., a low overall level of randomness in the dynamics, the global
alignment A is always high. In the deterministic limit, it reaches
a level of 85%, and even for a large heterogeneity in the agents’
affective involvement, it is still above 60%. This contrasts with the
random limit of small µe, where the global alignment drops to zero
if σe is below 0.5. If it is above 0.5, i.e., if by chance there are still suf-
ficiently many agents with a larger affective involvement, this again
allows a global alignment of opinions. Hence, we confirm again that
our opinion dynamics with alignment and repulsion is very robust
against variations in the agent’s parameters. On the other hand,
we find that the transition between aligned and non-aligned global
states is rather steep. This means, there is a critical level of random-
ness that can destroy the global alignment of opinions, as it should
be rightly expected.

The second variable to characterize the alignment of agents’
opinions to the dominant dimension is the pairwise directional
alignment Dij(t) = 1 −1φij(t)/π . We have shown in Figs. 5 and 9
that the histogram of these values over time approaches a bimodal
distribution. This indicates that the system develops a state of
polarization where agents form clusters of opinions along oppo-
site directions of the dominant dimension. This means that there
is a coexistence of opposite opinions in the long term, whereas a
unimodal distribution would refer to consensus. These two out-
comes can be characterized by the standard deviation σD of the
distribution P[D]. While the mean of this distribution is in both
cases µD ≈ 0.5, consensus would refer to small values of σD, while
polarization refers to large values of σD. We note that because the
values for Dij are bound between 0 and 1, a large value of σD

means 0.5.

FIG. 12. Scatterplot of individual alignment ai vs emotional involvement ai for
the results shown in Fig. 10(b) with M = 28.

We have also investigated how the distribution P[D] depends
on the distribution of the affective involvement N (µe, σe). The
results are shown in Fig. 11(b). For the deterministic limit of large
µe and small σe, we find high values for σD, i.e., a clear polarization.
This even holds if the heterogeneity of the agents’ affective involve-
ment ei is increased. For the random limit of small µe and small σe,
on the other hand, we see that the global polarization is destroyed
by the noise; alternatively, consensus is obtained. This is in line also
with our previous discussions that an increased noise level fosters
consensus. Again, we note that the transition between consensus
and polarization is rather steep; i.e., there exists a critical level of
randomness.

C. Individual alignment

We also investigate how the affective involvement ei of individ-
ual agents impacts their individual ability to align to the dominating
opinion dimension. For this alignment, we can define an angle
ψ i

[

oi, c1

]

between the individual opinion vector oi and the main
PCA component c1. The agent i is perfectly aligned to the main
ideological dimension if ψ i = 0; i.e., the opinion vector points into
the direction of the PCA component c1 or if ψ i = π , i.e., the opin-
ion vector points into the direction opposite to c1. The latter case
indicates individual opposition and forms the basis for polarization.
However, still, this opposition can be expressed in terms of the ideo-
logical dimension. Thus, we define the individual alignment ai(t) of
the agent i to the main ideological dimension as

ai(t) =
∣

∣

∣

∣

2ψ i(t)

π
− 1

∣

∣

∣

∣

; (19)
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FIG. 13. (a) Correlation re,a, Eq. (20), between individual affective involvement e
i and individual alignment ai and (b) the regression parameter b, Eq. (21), of ei on ai for

varying distributionsN (µe, σe) to describe the affective involvement of agents. Different lines refer to different values of µe, the x-axis to different values of σe. Error bars
indicate the standard errors with respect to the mean.

ai = 0 if the opinion vector oi is orthogonal to the dominant ide-
ological dimension c1 and ai = 1 if it is either 0 or π , pointing in
either direction from the origin.

The scatterplot shown in Fig. 12 gives us a first indication of
how the two agent variables ei and ai relate. We see that a higher
affective involvement, i.e., a lower level of random opinion changes,
indeed correlates with a higher level of individual alignment. This
reflects the dissolving role of noise on alignment, already discussed
for the global alignment A. We note again that A is not defined as an
average over individual alignments.

To study this relation in a more systematic manner, we repeat
the simulation procedure used in Sec. IV B. We define the Pearson
correlation coefficient between ei and ai as

re,a =
N

∑

i eiai −
∑

i ei
∑

i ai

√

N
∑

i (e
i)

2 −
(
∑

i ei
)2

√

N
∑

i (a
i)

2 −
(
∑

i ai
)2

. (20)

We then vary the distribution of affective involvement N (µe, σe)

from which the ei are sampled to see how this impacts re,a. The
results are shown in Fig. 13(a). We find again that in the ran-
dom limit, this correlation breaks down. For the deterministic
limit of large µe, we see that the correlations also decrease with
σe. This is quite obvious because σe → 0 means that all agents
have the same affective involvement ei → e. Their individual align-
ment ai may still vary, but its correlation with a constant e is
zero.

Eventually, we can also analyze the scatterplot of Fig. 12 by
means of a linear regression model,

ai = c + b ei + εi, (21)

where εi is the error term (residual) and c is the intercept. The
regression parameter b varies with the parameters of the distri-
bution N (µe, σe) as shown in Fig. 13(b). Again, we see that in

the random limit of small µe, b is close to zero; i.e., correla-
tions are low, while in the deterministic limit, its value is rea-
sonably large. The phase transition at a critical σe is also clearly
visible.

V. CONCLUSION

A. Agent-based modeling

In this paper, we apply agent-based modeling as one possi-
ble methodology to understand an empirically observed macro-
phenomenon, in our case the alignment of individual opinions.
Agent-based modeling requires us to provide reasonable micro-
mechanisms of how agents influence another in their opinions. We
base the proposed mechanisms in established psychological theo-
ries, notably (structural) balance theory and the theory of directional
voting.

Our model then allows testing how different assumptions about
such mechanisms impact the macroscopic dynamics. This means,
we do not follow a data-driven modeling approach, which tries
to reproduce a specific real-world outcome by estimating inter-
action parameters from observations.67 Alternatively, we aim at a
generative explanation,21 a thought experiment to find out which
mechanisms are necessary and sufficient to generate a stylized ver-
sion of empirical reality—and, perhaps even more important, which
mechanisms are not sufficient. By adding or removing mechanisms
and tuning model parameters, we can improve our model step by
step until we finally attain a model that is able to reproduce the
desired macro-phenomenon. This of course does not prove the
validity of the model assumptions, but it is a clear indicator which
modeling hypotheses are compatible with a given macroscopic
outcome.

Chaos 30, 093139 (2020); doi: 10.1063/5.0007523 30, 093139-14

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

B. Obtaining global issue alignment and polarization

Our model shall be able to reproduce two features of opin-
ion dynamics observed in the political domain: (i) The emergence
of global issue alignment: Individual opinions on different policy
issues are correlated such that a dominant “left–right” ideologi-
cal dimension can explain most of them. (ii) A polarization of
opinions on this ideological dimension: While individual opin-
ion vectors are aligned, they point to opposite directions from the
origin.

Global issue alignment already assumes an underlying multi-
dimensional opinion space, which is neglected in many opinion
dynamics models. It means that instead of a scalar value, opinions
are characterized by vectors in this M-dimensional space. The exis-
tence of global alignment was empirically demonstrated, and it was
also theoretically discussed in political science with respect to voting
and coalition formation.2,37,49 However, there is still a lack of models
that are able to generate this phenomenon.

We fill this research gap by investigating the conditions under
which global issue alignment is obtained. Specifically, in our model,
we vary (a) what information about the opinions of others agents
take into account and (b) how they respond to this information. We
have shown that the so called proximity voting, which is equivalent to
using the Euclidean distance to evaluate the similarity of opinions,
fails to generate a global issue alignment. Directional voting, how-
ever, in which agents measure similarities of opinions dependent on
the “right” and “wrong” side, has the potential to generate global
alignment, at least in low-dimensional opinion spaces. If we com-
bine directional voting with a repulsive force between far-distant
opinions, we find that global issue alignment also emerges in high-
dimensional opinion spaces and is very robust against parameter
changes in the model.

The repulsive force is not just postulated to improve the model,
but it is motivated by the mentioned psychological mechanisms of
cognitive balance. The tendency to increase cognitive balance could
either lead to an attractive force, i.e., opinions of agents become
more similar to minimize the dissonance, or to a repulsive force,
i.e., opinions of agents become more different. Hence, we propose a
reasonable micro mechanism. Even more, we also demonstrate how
these assumptions can be formalized in an opinion dynamics model
by providing a formal model in polar coordinates.

C. Affective involvement

As an asset, our model includes an emotional component in the
opinion dynamics. This extension is rooted in arguments from polit-
ical science theory that global issue alignment is driven by “passion,”
i.e., affective involvement in politics.54 We implement the emotional
component in our agent-based model by means of a heterogeneous
parameter, ei, drawn from a distribution N (µe, σe) with given mean
and variance. The higher the level of affective involvement, the more
resistant agents are to change their opinions. We discuss two differ-
ent ways of implementing this relation (a) by defining a threshold
for directional similarity and (b) by impacting the level of random
opinion changes.

In our paper, we systematically study the influence of affective
involvement on global issue alignment and on individual alignment.

We find that two different types of outcome can be observed: If
the level of affective involvement, expressed by µe, is low and the
heterogeneity across agents, expressed by σe, is also low, we end
up in regime with little global alignment, low opinion polarization,
and little individual alignment. In this disorganized state, no dom-
inant ideological dimension emerges to which agents align their
opinions.

If on the other hand, the heterogeneity of agents’ affective
involvement is high, which means that (for both low and high µe)
there is a sufficiently a large number of agents with a high level of
affective involvement, we always find outcomes with high global
issue alignment, high opinion polarization, and high individual
alignment. This is a highly organized state in the opinion space, and
we have pointed out that there is a rather sharp transition between
the disorganized and the organized states dependent on the param-
eters of the affective involvement. Therefore, we can conclude that
affective involvement, the way it is considered in our model, fosters
the global issue alignment, as argued also by political scientists. Even
more, global alignment can only be observed beyond a critical level
of affective involvement.

APPENDIX A: SIMULATION OF THE

TWO-DIMENSIONAL BOUNDED CONFIDENCE MODEL

Here, we present snapshots of the dynamics for which the ini-
tial state is shown in Fig. 3(a) and the final states in Figs. 3(b)
and 3(c). The model parameters are chosen as follows: µo = 0
and σo = 0.8 for the initial opinions and µe = 0.5 and σe = 0
for the emotional involvement; i.e., all agents have the same ei ≡
e = 0.5. For the confidence interval, two different values are cho-
sen: ε = 0.5 in Figs. 14(a) and 14(b) and ε = 0.25 in Figs. 14(c)
and 14(d).

To further quantify the dynamics of the agent-based model, we
analyze the evolution of the pairwise Euclidean similarity,

Sij(t) = 1 −
dij(t)
√

8
. (A1)

Sij(t) is a linear transformation of the pairwise Euclidean distance
and is shown in Fig. 15. We see that initially, the distribution
P[S] is rather broad, but becomes more narrow over time, to
converge almost to a delta peak at S = 1. This means that the
pairwise similarity is maximized for all agents. In the case of con-
sensus, this happens because all agents have reached the same
opinion vector, also shown in Fig. 2(b). In the case of coexis-
tence, the outcome is almost identical because the opinion clusters
in the periphery, also shown in Fig. 2(c), contain only very few
agents. Hence, the very small contribution at about S = 0.7 in
Fig. 15(c) is barely noticeable. After all, this configuration is sta-
ble because those agents that still interact have reached the same
opinion vector and belong to the same cluster in the opinion space.
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FIG. 14. Snapshots of the positions of agents in the two-dimensional opinion space: (a) and (b) ε = 0.5 and (c) and (d) ε = 0.25. (a) t = 30 000, (b) t = 40 000, (c)
t = 30 000, and (d) t = 90 000.
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FIG. 15. Distribution of the pairwise Euclidean similarity Sij(t), Eq. (A1), at different time steps: (a) t = 0; for the distribution in the opinion space, see Fig. 2(a). (b) t = 30 000.
(c) t = 210 000. For parameters, see Fig. 14, ε = 0.25.

APPENDIX B: SIMULATION OF THE OPINION ALIGNMENT IN M = 28 DIMENSIONS

In Fig. 16, we present results of the multi-dimensional opinion alignment without repulsion. The results are discussed in Sec. III D.

FIG. 16. Opinions of N = 2500 agents in a multi-dimensional opinion space (M = 28) at different time steps: (a) t = 50 000 and (b) t = 70 000 and t = 100 000. (top row)
The projection of the opinions on the space of the two principal components c1, c2 is shown. (bottom row) Distribution of the pairwise directional similarity, P[Dij(t)], Eq. (9).
(c) P[Dij(0)] is shown in Fig. 7(c). Further parameters: ei ≡ e = 0.5, no noise.
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